1868 AIAA JOURNAL

if po is also constant everywhere. In other words, the flow
has to be isentropic everywhere. Substituting Eq. (20a) into
Eq. (21), it can be arranged as

dIn{[1 + (v — DM.2/2)/[1 + (v — DM.2/4]}
or

— (v = Diwr/a)/[L — (v — D(**/2a)] (22)

Direct integration of Eq. (22) also yields a closed form solu-
tion

0+ (v - HM2/2)

[+ (y — LDM.2/4]

where C2(2) is an arbitrary function of z. Cs(z) must be deter-

mined from the partial derivative of Croeco’s equation with

respect to z.  For a constant area nozzle Cy(z) is a constant
which may be determined from the mass flow relationship.

= C()[1 — (v — Do’r’/2a°] (23)
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Wall Curvature and Transition
Effects in Turbulent Boundary Layers

Tuxcer CeBECI*
Douglas Aircraft Company, Long Beach, Calif.

Introduction

HIS Note presents one approach by which the eddy vis-

cosity and mixing-length concepts which are being used
in the current turbulent boundary-layer prediction methods
can be modified to account for streamwise wall curvature and
transition effects. A comparison of several calculated re-
sults using these modifications in the prediction method of
[Ref. 1] show good agreement with experiment.

Analysis

We consider the momentum and energy equations for two-
dimensional compressible boundary layers

pu(Qu/0x) + pr(Ou/dy) = uldu./dx) + @7/dy) (1)
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Fig. 1 Comparison of calculated experimental skin-
friction coefficients for the data of Schubauer and Kleba-
noff.

pu(OH /0z) + pv(0H/dy) = (0/0y)(ur + ¢) @)

and the eddy viscosity formulation of Ref. 2, which for inner
and outer regions of the boundary layer is defined by ¢, and
€, respectively

gef = (ky)*(1 — exp(—y/A4))*ou/dy|
€ = _ © Yy 6] —1 3)
€ = 0.0168']:) (ue — u)dy”:l + 5.5 <g> :I (

In Eq. (3), 4 is a damping-length constant given by
A = A%(ru/pu) "V (p/pu) V2 (1/N) €y
where

N = {(p/p) (pe/pu)> pF/v0* [1 — exp(11.8 (uu/m)vs*)] +
exp(11.8 (uo/wvn tHYE (5)

v du. e\ AN
it ds (5) ) T = (;r) (©)

The empirical constants & and A+, which are generally
assumed to be constants, vary at low Reynolds numbers?

k=040 4 0.19/(1 4 0.4922), A+ =26+ [14/(1 + Z?)],
Z 203 (7)

I

p+

where Z = Ry X 1072
In Egs. (1) and (2), 7 and ¢ denote the total shear stress
and heat-transfer rate, respectively. They are given by

T = p(Ou/dy) — pw''), q = kT/0y) — p'H") (8)

which, by the eddy viscosity and turbulent Prandt] number
(Pr.) concepts, can also be written as (see Ref. 1)

ou ou oT e OH
T—#ay—kpeafy,q—ka—y%—p*— 9

The eddy viscosity expressions in the form given in Eq. (3)
account for pressure gradient and heat and mass transfer
effects quite well. They can be generalized to account for
streamwise wall curvature effect by multiplying them (both
inner and outer eddy viscosity expressions) by S?% an ex-

Table 1 Extent of transitional Reynolds number at
two blade Reynolds numbers

Rey, X 1073 Rey X 1075 ReAx X 107
1 0.1 0.28
1 0.5 0.81
10 1.0 1.30
10 5.0 3.80




SEPTEMBER 1971

pression given by Bradshaw.t This expression is based on
an analogy between streamline curvature and buoyancy in
turbulent shear flows. It is given by

8 =1/ + BRy); ‘R: = (2u/A)(Qu/oy)~*  (10)

The parameter 8 is equal to 7 for a convex surface and is
equal to 4 for a concave surface. The radius of curvature
A is positive for a convex surface and is negative for a con-
cave surface. According to Bradshaw, the effects of curva-
ture on the mixing length or eddy viscosity are appreciable
if the ratio of boundary-layer thickness § to radius of curva-
ture A exceeds roughly 1/300.

In most of the practical boundary-layer calculations, it is
necessary to calculate a complete boundary-layer field.
That is, for a given pressure distribution, and for a given
transition point (natural), it is necessary to calculate laminar,
transition, and turbulent boundary layers by starting the
caleulations at the leading edge or at the stagnation point of
the body. In current prediction methods, however, the
calculation of transitional boundary layers are avoided by
assuming this region to be just a switching point between
laminar and turbulent boundary-layer calculations. At the
transition point the turbulent boundary-layer calculations
are started by activating the eddy-transport coeflicients.
In general, especially at low Reynolds numbers, this is not
a good procedure and can lead to someierrors. This point
can best be described by an example. We consider the flow
past a turbine or compressor blade and assume two blade
Reynolds numbers Re; of 10° and 10°. The extent of the
transition region on the blade at these two Reynolds numbers
can be calculated by using the recent eorrelation given in
Ref. 5

Rep, = ARe? (11)

where Rea, is the extent of the transition Reynolds number
and A is an empirical expression given by

A = 60 4 4.86M 2% 0< M. <5 (12)

According to Ref. 5, Egs. (11) and (12) are based on the cor-
relation of incompressible and compressible data for Mach
numbers less than 5. If we assume two transition points,
namely, at 10 and 509, chord points, then the extent of the
transition Reynolds number for the two blade Reynolds
numbers (Res) according to Eq. (11) are shown in Table 1.
The previous values of Rea, clearly show that the transi-
tional region is very important and that it must be accounted

o EXPERIMENT
~-— WITH CURVATURE
CORRECTION CALCULATED

1.0r ~——-~ WITHOUT CURVATURE 6 009 o)
CORRECTIO%
,‘/(/7& X=74CM

70‘?Oooxofso CM(INITIAL)

o 5 1.0 Y
y~CM

Fig. 2 Comparison of calculated and experimental ve-
locity profiles for the data of Schmidbauer.
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Fig. 3 Comparison of calculated and experimental skin-
friction coeflicients for Schubauer’s ellipse.

for in order to make accurate boundary-layer calculations.
For example, at a Reynolds number of 0.5 X 10¢, when the
transition point is at 509, chord-point, the extent of transi-
tional region is 819, which means that the flow in the rest
of the body from the transition point up to the trailing edge
is in a transitional state.

The eddy viscosity expressions given in Eq. (3) can also
be generalized to account for the transition effects by multi-
plying them (expressions for both inner and outer regions)
by the intermittency factor given by Chen and Thyson.?
This expression is developed from the point of view of inter-
mittent production of turbulent spots and is further ex-
tension of Emmons’ spot theory® and Dhawan and Nara-
simha’s intermittency expression for incompressible flows?
to compressible flows with pressure gradient. According to
Ref. 5, the intermittency factor is given by

W =1 — exp !—G’r(xn) [ft ‘%x] [f“%f } (13)

where @ is a spot formation rate parameter,

= (3/A2)(u?/v?)Req 134 (14)
and
Rew = uu/v (15)

For compressible flows, the transition Reynolds number
Re:. can be satisfactorily caleulated by using several em-
pirical correlations. One such useful expression is the one
based on combination of Michel’s method® and Smith’s e-
correlation curve Ref. 9. It is given by (see Ref. 10)

Ro, = 1.174[1 + (22400/Re..) 1Reu*,
0.1 < 10° < Re,r < 60 X 10° (16)

Comparison with Experiment

Figures 1-4 show a comparison of the calculated results
with experiment. The calculations were made by using the
method of Ref. 1, which for compressible flows consists of
solving the system (1), (2), (9), and the continuity equation
by using the eddy viscosity expressions given by Eq. (3) to-
gether with a constant turbulent Prandtl of 0.9 assumption.
The method is applicable to both laminar and turbulent
boundary layers. The calculations can be started either at
the leading edge or at some downstream location. In the
former case, the flow starts as laminar and becomes turbulent
at any x location by activating the eddy-transport coeffi-
cients. In the latter case, it is necessary to specify the initial
veloeity profiles.

Figures 1 and 2 show the effect of wall curvature modifi-
cation on the computed skin friction and velocity profiles
for the experimental data of Schubauer and Klebanoff!! and
Schmidbauer!?, respectively. In the former case, 6/A 1is
around 1/100, and in the latter case, 6/A is around 1/75.
The wall-curvature correction definitely seems to improve
the caleulations.

Figures 3 and 4 show the effect of transition region modi-
fication on the computed skin friction for two different
flows. Figure 3 shows the results for the experimental data



1870 ATAA JOURNAL

401
I‘\\
r M =197 ’l N
D O DATA OF COLES !
L WITH ¥ } !
hig CALCULATED !
Jd o~ WITHOUT 7, !
CfXIO }
1
1
1
1o |
2 1 I 1 ) I o | 1 [l L 1 S N
0.l 1.0 10.0

Fig. 4 Comparison of calculated and experimental skin-
friction coefficients for a supersonic flat-plate flow mea-
sured by Coles.

of Schubauer.’® This is an incompressible flow at relatively
low Reynolds numbers. Figure 4 shows the results for the
experimental data of Coles.’* This is a supersonic adiabatic
flow. The results indicate that in both cases the caleulations
by using the intermittency distribution given by Eq. (10)
seem to account for the transition region rather well.
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Alleviation of Vortex-Induced Heating
to the Lee Side of Slender Wings in
Hypersonic Flow

AvveEN H. WaITEHEAD JR.* AND MITCHEL H. BERTRAMT
NASA Langley Research Center, Hampton, Va.

ECENT hypersonic studies show that the vortex system
over the lee surface of planar delta wings,'=? blunted
half-cones,*® and on a conceptual high-cross range shuttle
vehicleS can cause intense heating to the centerline region.
The critical effect of Reynolds number in determining the
location, initiation, and intensity of the vortex-induced heat-
ing has been studied.t~¢ Moore’ indicates that vortices are
produced at a leading edge corner, i.e., wherever a discon-
tinuity exists in the leading-edge geometry. This observation
led the present authors to propose contouring the planform of
the apex region of a slender delta wing to more gradually turn
the flow to reduce the interaction between opposing leading
edge flows, which leads to the formation of the vortex system.
The present study was done in the Langley 11-in. Mach 6.8
Tunnel employing a sharp-apex delta wing, a rounded (eircu-
lar-are) apex delta wing, and hyperbolic and parabolic-plan-
form wings. The leading edges of the models were sharp
(<0.075 mm thick) with flat upper surfaces and lower surface
bevel angles (perpendicular to the leading edge) between 18°
and 20°. The sharp and rounded-apex delta wing models
used in the oil-flow study were swept 75° so these results
together with those reported in Refs. 1-3 provide information
over at least a small range of sweep (A = 70°, 75°, 78°) for
comparison with the hyperbolic and parbolic-planform wing
results. The delta wings employed in the heating and vapor
screen tests were swept 70°. Some details of the models are
shown in Figs. 1 and 3. For the delta wings, the length L is
the total length and for the hyperbolic and parabolic shape
wings, L represents the distance along the root chord to the
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